
Automatic Speech Recognition – Coursework

s1794003, s1886437

1. Introduction
This report presents and discusses the results of word recog-
nition experiments1 we performed using Kaldi automatic
speech recognition toolkit (Povey et al., 2011). The experi-
ments2 were carried out on three types of models: mono-
phone, triphone and speaker adaptive training (SAT) mod-
els.

For the monophone model, we investigated the optimal
number of Gaussians that minimises the word error rate
(WER). In addition, we examined the effects of using cep-
stral mean and variance normalisation (CMN and CMVN),
as well as the effects of using the delta and delta-delta
features on the performance of the model.

Using a tied-state triphone model, we performed a grid
search to find the optimal numbers of Gaussians and clus-
ters that give the best WER. We then extended our best
performing triphone model to be dependent on the speak-
ers. To achieve this, we adopted the feature-state max-
imum likelihood linear regression (fMLLR) transforms
to normalise the variation between speakers during train-
ing (Gales, 1998; Woodland, 2001). We then decoded the
model using speaker adaptation. Finally, we adopted a deep
neural network (DNN) with SAT using fMLLR speaker
adaptation and was able to achieve 44.48% WER when
tested using our own recordings.

The next section introduces the datasets used in our experi-
ments and describes how the performance of the models are
evaluated. Section 3 gives a brief overview of the HMM-
GMM model, as well as the monophone and triphone mod-
els. Section 4 outlines the experiments we conducted on the
monophone, triphone and speaker adaptive training models.
It also presents the results of these experiments, as well as
discusses them in details. Finally, the findings of this report
are summarised in Section 5.

2. Data and Evaluation Methods
2.1. Data

The training and decoding of the models in this report are
carried out using the TIMIT dataset. Once the optimal
hyperparameters are selected, the models are evaluated
using the authors’ own recordings.

1All experiments were performed on Google Compute. The
results may vary slightly when scripts are run on DICE.

2All experiment results can be found in the WorkDir/my-
local/log/ directory.

Dialect Regions Female Male Both
New England 14 24 38
Northern 23 53 76
North Midland 20 56 76
South Midland 15 53 68
Southern 25 45 70
New York City 13 22 35
Western 18 59 77
Army Brat 8 14 22
Total 136 326 462

Table 1. Number of speakers within each of the eight dialect re-
gions in the training set.

2.1.1. TIMIT dataset

The TIMIT dataset consists of speech recordings from eight
major dialects of American English. The experiments in
this report are trained using a subset of the TIMIT dataset
and contains 3,696 utterances from 462 speakers. The
number of speakers in each dialect region is summarised in
Table 1. The training set contains 8 utterances from each
speaker, for a total 1,088 female utterances and 2,608 male
utterances.

Decoding is carried out on the TIMIT test set and consists
of 192 utterances from 24 speakers. There are one female
and two male speakers from each dialect region.

2.1.2. Authors’ recordings

To further evaluate some of our models we create a new
testing data set. The two male authors each recorded 20
English utterances. The first author (speaker 1) has a New
Zealand accent, while the second (speaker 2) has an English
accent. The recordings are monaural with the sampling
frequency of 16kHz.

2.2. Evaluation Methods

The primary performance metric for evaluating models is
the word error rate (WER) – which is derived from the
Levenshtein distance between the hypothesised and the
correct words. WER is defined as:

WER =
Insertions + Substitution + Deletion

Total words in correct transcript
× 100. (1)

WER is used to measure the accuracy of a speech recogni-
tion system. The lower the WER, the better the system is
deemed to be.



Automatic Speech Recognition – Coursework (s1794003, s1886437)

Computation complexity of each model is measured using
training and testing (decoding) times. A model with lower
training and testing times is preferable because it is more
likely to scale better on a large dataset.

Kaldi captures log-likelihood information during the train-
ing and testing of a model. Log-likelihood is a measure
of how likely the observed data (e.g. sequence of words)
is, given the model parameters. In general, higher log-
likelihood indicates that a model can fit the observed data
better. As a model becomes more complex, it is more
likely to receive higher log-likelihood. However, this may
not be desirable because the model is at risk of overfitting
and will not generalise well. Furthermore, log-likelihood
is dependent on the number of observations, and so the
log-likelihood obtained during training cannot be directly
compared to the log-likelihood obtained during testing. Due
to these reasons, we focus on WER when evaluating the
model performances.

3. Background
3.1. HMM-GMM

In speech recognition, the objective is to create a classifier
that can identify which phone is uttered in each frame. In
order to achieve this, the Gaussian mixture model (GMM)
can be used. Specifically, for a given phone class, a GMM
can be fitted using the expectation-maximisation algorithm
by training on all frames where that phone is found. A
new phone utterance can then be classified by determining
frame-by-frame which phone class is most probable. That
is, which GMM has the highest likelihood of generating
that phone (or its features).

An issue with using GMM by itself is that it does not exploit
temporal dependencies in the acoustic signals. That is,
it assumes that for a given phone, there are no acoustic
differences in the beginning, middle and end of an utterance.
In order to over come this limitation, a hidden Markov
model (HMM) is used to model the temporal dependencies
and each phone is represented using three HMM states –
beginning, middle and end. Subsequently, each state is
modelled by a GMM to determine the likelihood of the
observation in that state.

3.2. Monophone

Monophone is an HMM-GMM model where each phone
is represented by a tri-state HMM (beginning, middle and
end). It is known as a context-independent model because it
assumes that each phone is uttered the same way regardless
of its context. This is not true in practice and is the main
drawback of this model.

3.3. Triphone

Triphone extends the monophone model to include the con-
text of the phone. Its representation includes the phone
before, as well as the one after. This allows triphone to
capture variation in utterance due to that arises from the

phone context.

An issue that arises with triphone is data sparsity. That is,
it is unlikely that the model will see each triphone with
enough observations during training. For a given phoneset
of n phones, there would be n3 possible triphones – even
though not all of these triphones would ever be encountered
in reality.

In order to overcome the issue of data sparsity, the tied-state
triphone model can be used where the states of acoustically
similar subphones are clustered (i.e. tied) together. All
the subphones in the same cluster share the same GMM
acoustic model. The clustering is performed in a top-down
manner by a phonetic decision tree. The decision tree
produces a set of states at each leaf of the tree – each of
these states is modelled by the GMM.

4. Experiments
This section provides the details of the experiments and
presents their results. The models that were examined are
monophone, triphone and SAT models.

4.1. Monophones

Two sets of experiments were performed with the mono-
phone model. First, we examined how the number of Gaus-
sian mixture components affects the performance of the
model. With this, we found the optimal number of Gaus-
sian components for the monophone model. We then per-
formed additional experiments to investigate the effects
of normalising cepstral means and variances of the speak-
ers, as well as the effects of using dynamic features (i.e.
delta and delta-delta) of Mel-frequency cepstral coefficients
(MFCCs).

4.1.1. GaussianMixture Components Experiment

A GMM is a weighted sum of Gaussian components. Given
that it has enough Gaussian components, the GMM can
be used to approximate any distributions. An important
factor to consider when training the GMM is the number of
Gaussian components to use. The model needs enough to
effectively generalise all the possible observations. How-
ever, if too many are used the model can risk overfitting to
the training data and performs poorly on an unseen dataset
(e.g. new utterances). It will also become more computa-
tionally expensive.

To investigate this we trained a number of HHM-GMM
monophone models with various numbers of Gaussian mix-
ture components. The results can be found in Figure 1. Note
that in Kaldi, training the monophone model is achieved by
using the steps/train.sh script. By default, this script
includes delta and delta-delta features. It also uses CMN
to train the models. We kept these settings as they were
because they do not interfere with our experiments.

As seen in from the plot, the WER is lowest when there
are about 6,000 Gaussian components. It is important to



Automatic Speech Recognition – Coursework (s1794003, s1886437)

0.2 0.4 0.6 0.8 1 1.2 1.4

·104

52

54

56

58

60

62

Number of Gaussian Components

W
E

R
(%

)

plot 1

0

200

400

600

800

Tr
ai

ni
ng

tim
e

(s
ec

on
ds

)

WER%
Train time

Figure 1. Effects of the number of Gaussian components (actual)
on WER and training time in monophone models.

note that the actual number of Gaussian components is not
the same as the number of components we specified. For
example, when we specified 6,000 Gaussian components,
the actual number of Gaussians was 5,988.

From the plot, we also observed a linear relationship be-
tween the training time of the monophone models and the
number of Gaussian components. This shows that the com-
putation complexity of adding an additional Gaussian com-
ponent is approximately linear. This finding is consistent
with the fact that GMM is a weighted sum of the Gaussian
components.

The average log-likelihood during decoding is -8.51 for
1,000 specified Gaussians, and increases to -8.37 for 15,000
Gaussians. This may indicate that a model with more Gaus-
sian components is able to fit the observed data better. How-
ever, as mentioned in Section 2.2, log-likelihood is not a
good performance metric. Increasing log-likelihood while
WER decreases is likely a result of overfitting as the model
complexity increases when more Gaussians are added.

4.1.2. Effects of Dynamic features and CMN/CMVN

So far we have trained our models with input feature vectors
of 39 dimensions. These 39 dimensions are:

• 12 MFCCs + 1 energy

• 13 first-order delta (12 MFCCs + 1 energy)

• 13 second-order delta (12 MFCCs + 1 energy)

Two thirds of the feature vector is occupied by the dynamic
delta features. In this section, we investigate whether these
dynamic features help to improve the performance of the
model.

CMN and CVMN are techniques used to add robustness to
the model via addressing the noises that are introduced by
channel characteristics, e.g. using different microphones.
Intuitively, removing these variability should increase the
performance of the model because the signal-to-noise ratio
would increase as a result. Therefore, we also investigate

WER (%) None CMN CMVN
No delta 82.49 81.21 79.11
First-order delta 63.32 61.73 62.11
Second-order delta 58.02 54.44 55.46

Training time (sec.) None CMN CMVN
No delta 302 299 303
First-order delta 379 380 381
Second-order delta 444 449 448

Testing time (sec.) None CMN CMVN
No delta 414 444 451
First-order delta 261 284 289
Second-order delta 200 204 196

Decode LL None CMN CMVN
No delta -4.19 -4.17 -1.30
First-order delta -6.82 -6.79 -1.05
Second-order delta -8.42 -8.39 0.20

Table 2. WER, training time, testing time and decode log-
likelihood for monophone models with no delta, with first-order
delta, or with first- and second-order delta features; and with no
mean/variance normalisation (None), with cepstral mean normali-
sation (CMN), or with cepstral mean and variance normalisation
(CMVN). The best WER is shown in bold.

how CMN/CMVN influence the performance of the model
in this section.

We conducted a combined set of experiments to test each
setting of dynamic features, as well as each setting of cep-
stral normalisation. The experiments were performed using
the previously obtained optimal number of Gaussian com-
ponents of 6,000. The results are presented in Table 2.

As seen from Table 2, the WER decreases as higher order
of delta features are added. The inclusion of delta-delta fea-
tures adds more context to the feature space which improves
the accuracy of the prediction.

The increase in feature dimensions also increases the train-
ing time as more computations are required to handle extra
features. However, this results in faster decoding. This
is possibly because decoding with Viterbi algorithm can
involve a beam search. The inclusion of dynamic features
result in more low-probability paths that are pruned out
in the process. This ultimately results in fewer possible
matches and speeds up the decoding process.

Both CMN and CMVN improve WER as they reduce the
noise through mean normalisation. We did not observe
any improvements when cepstral variance normalisation
is applied. This contradicts with the results of Viikki &
Laurila (1998). However, it could be explained by the fact
that the utterances in the TIMIT dataset are short, and so
there is not enough data for parameter estimation (Prasad
& Umesh, 2013).



Automatic Speech Recognition – Coursework (s1794003, s1886437)

WER (%) Number of Gaussian components
10,000 12,000 14,000 16,000 18,000 20,000

N
um

be
ro

fc
lu

st
er

s 1,000 46.45 48.24 46.84 46.84 46.84 47.41
1,500 45.18 45.50 44.41 45.05 46.65 45.37
2,000 46.26 46.01 45.81 45.75 45.62 46.45
2,500 45.75 46.39 45.75 45.69 45.05 44.86
3,000 46.52 47.48 47.22 46.58 47.99 46.84
3,500 46.77 46.96 47.09 47.03 47.73 46.58
4,000 46.71 46.65 47.22 45.94 45.50 45.75
4,500 46.90 46.33 46.39 46.77 47.03 46.90

Table 3. Coarse grid search for the optimal numbers of Gaussian
components and clusters in tied-state triphone model. The best
WER is shown in bold.

4.1.3. Evaluating best system

The best monophone model is specified with 6,000 Gaus-
sian components, and is trained with delta and delta-delta
features, as well as CMN. Under these conditions, the mono-
phone tested on the authors dataset has WER of 63.08%
(59.60% for speaker 1 and 64.54% for speaker 2). These
WERs are higher than the WER obtained through decod-
ing on the TIMIT dataset. The higher WERs could be
explained by the fact that the authors have different accents
from the speakers in the TIMIT dataset which the models
were trained on.

4.2. Triphones

4.2.1. Effects of numbers of clusters and numbers of
Gaussian mixture components

In this section, we investigate how number of clusters (i.e.
leaves) and the number of Gaussians affect the performance
of a triphone model. More clusters allows more variability
in phone and prevents acoustically dissimilar sounds from
being tied together. However, having too many clusters may
result in sparse data with insufficient observations in each
cluster. In addition, the number of Gaussians are required
to estimate the PDFs in each cluster.

In order to train the triphone model, the monophone model
must first be cloned to triphones. To achieve this, we used
the best monophone model obtained from Section 4.1 which
has 6,000 Gaussian components, and is trained with delta
and delta-delta features with CMN.

We first performed a coarse grid search to get an intuition of
where the local optima might be. In our search, we specified
between 10,000 and 20,000 Gaussian components with
increments of 2,000; and between 1,000 and 4,500 clusters
with increments of 500. The lowest WER is obtained when
the numbers of Gaussians and clusters are 14,000 and 1,500,
respectively. We then performed a fine grid search around
these settings, in attempt to find the local optima. However,
the optimal settings remained unchanged. The complete
WER results are summarised in Tables 3 and 4 for coarse
and fine search, respectively.

From the grid search conducted, the triphone model appears
to be insensitive to the changes in the parameters. The the
average number of Gaussians per cluster, as computed by

WER (%) Number of Gaussian components
13,000 13,500 14,000 14,500 15,000

N
um

.c
lu

st
er

s 1,300 45.18 45.81 46.90 46.01 46.96
1,400 46.39 46.65 46.20 45.75 46.01
1,500 46.26 46.52 44.41 45.56 46.71
1,600 44.86 45.37 44.98 45.88 45.50
1,700 45.62 46.52 45.56 45.30 44.98

Table 4. Fine grid search for the optimal numbers of Gaussian
components and clusters in tied-state triphone model. The best
WER is shown in bold.

num Gaussians
num clusters , ranges from ≈ 2 to ≈ 20 Gaussians per cluster.

In this range, the best and the worst models differ in WERs
by about 3%.

The training time and testing time appear to be higher when
the number of Gaussians per cluster is higher. Furthermore,
the test log-likelihood appears to increase as the number
of Gaussians per cluster increases. These observations are
consistent with the fact that more Gaussians per cluster
increases the complexity of the model, resulting in higher
computation time and better fit to the observations (possibly
overfit).

4.2.2. Evaluating best system

The best tied-state triphone model is specified with 14,000
Gaussian components and 1,500 clusters. Under these con-
ditions, the tied-state triphone model tested on the authors
dataset has WER of 53.43% (46.89% for speaker 1 and
58.45% for speaker 2). This shows ≈ 10% overall improve-
ment in WERs over the monophone model and provides
evidence that context is important in acoustic modelling.

4.3. Speaker Adaptive Training and Speaker
Adaptation

We extended the speaker-independent triphone model to
carry out speaker adaptive training (SAT) and speaker adap-
tation using fMLLR. SAT involves estimating and applying
fMLLR transform matrix to the model (mean and variance
of Gaussians) during training in order to perform speaker
normalisation. That is, to remove variability from data that
arises due to having different speakers. On the other hand,
speaker adaptation aims to reduce the mismatch between
the train and test data. This enables the model to perform
well on the unseen speakers in test data.

We first performed SAT under HMM-GMM. We then mod-
ified the model to use a deep neural network (DNN) to
estimate the PDFs.

4.3.1. HMM-GMM

The experiments in this section involve running SAT on top
of the best tied-state triphone (delta and delta-delta) model
using HMM-GMM acoustic modelling. The procedure can
be summarised as:

1. fMLLR transforms are estimated and applied to the



Automatic Speech Recognition – Coursework (s1794003, s1886437)

model parameters during training to normalise any
variability between speakers.

2. Speaker adaptation is performed during decoding to
reduce the mismatch between train and test data.

A grid search was carried out to find the optimal numbers
of Gaussians and clusters (i.e. leaves) that minimise the
WER. We trained our SAT model by specifying between
10,000 and 20,000 Gaussians in 2,000 increments, and
between 1,000 and 4,000 clusters in 500 increments. It is
important to note that under these settings, the final number
of PDFs estimated by GMM are constant at 2,560 across
all models. This would explain why the training and testing
times remained relatively unchanged across all models (313
seconds for training and 187 seconds for decoding, on
average).

The lowest WER of 39.49% is achieved on the TIMIT test
dataset when we specified the numbers of Gaussians and
clusters to be 16,000 and 1,500, respectively. When we ran
this model using the authors dataset, we obtained WER of
48.67% (39.27% for speaker 1 and 56.61% for speakers 2).
The decrease in WERs provides across TIMIT and authors’
dataset provides some indications that fMLLR transforms
is able to remove speaker-related variability from data.

Relevant scripts:

• exp_task3_sat.sh contains the script to train and
decode the HMM-GMM SAT model using TIMIT
dataset.

• run_task3_sat.sh contains the script to test the
best performing HMM-GMM SAT model on the au-
thors’ recordings.

4.3.2. HMM-DNN

In this section, we added a DNN in order to train a new
SAT model with fMLLR speaker adaptation. The steps to
train and test can be summarised as follows:

Training:

1. Create alignment on previously trained HMM-GMM
SAT model using training data.

2. fMLLR-transform the features of training set.

3. Train with DNN using fMLLR features as inputs.

Testing:

1. Create alignment on previously trained HMM-GMM
SAT model using test data.

2. fMLLR-transform the features of test set.

3. Decode with DNN using fMLLR features.

WER (%) TIMIT Authors Speaker 1 Speaker 2
Monophone 54.44 63.08 59.60 64.54
Triphone 44.41 53.43 46.89 58.45
HMM-GMM SAT 39.49 48.67 39.27 56.61
HMM-DNN SAT 32.08 44.48 38.70 46.54

Table 5. Summary of test results on TIMIT and authors dataset
(including individual results for speakers 1 and 2) for each model
in this report.

We experimented with different numbers of hidden layers,
as well as the number of dimensions in each hidden layer in
order to search for the best DNN architecture that minimises
the WER. We trained the HMM-DNN model using 6, 7 and
8 hidden layers, where the hidden layers have 512, 1,024
or 1,536 dimensions. The learning rate of 0.0008 was used
in all experiments (default in Kaldi).

The lowest WER of 32.08% is achieved on the TIMIT test
dataset for DNN with 7 hidden layers and 1,024 hidden
dimensions. Overall, as the number of hidden layers and
hidden dimensions increase, the training and test time in-
crease. This is because the network has to estimate more
parameters (weights). Furthermore, the log-likelihood in-
creases as the number of hidden dimensions increase.

When we ran the HMM-DNN model using the best set-
tings on our own recordings, we obtained WER of 44.48%
(38.70% for speaker 1 and 46.54% for speakers 2). The
results indicate that using DNN for SAT and speaker adapta-
tion with fMLLR transforms can further remove variability
between speakers.

Relevant scripts:

• exp_task3_nn2.sh contains the script to train and
decode the HMM-DNN SAT model using TIMIT
dataset.

• run_task3_nn2.sh contains the script to test the
best performing HMM-DNN SAT model on the au-
thors’ recordings.

The summary of test results for the models in this report
are summarised in Table 5. Overall, HMM-DNN SAT im-
proved WER on TIMIT dataset by 22.36% and on authors’
recordings by 18.6%.

5. Conclusion
Using Kaldi, we performed various experiments on mono-
phone, tied-state triphone and SAT/speaker adaptation word
recognition models. The key findings are as follows:

• Training with delta and delta-delta features can im-
prove the WER of a monophone model by adding
more context to the features. This comes at a cost of
increased training time.

• CMN improves the WER of a monophone model.
However, we did not see an improvement in WER



Automatic Speech Recognition – Coursework (s1794003, s1886437)

when cepstral variance normalisation was applied.
This is possibly a result of having speech data with
short utterances. An alternative technique to CMVN
that works with short utterances is called vector Taylor
series (VTS) (Moreno et al., 1996). VTS can be tested
in future experiments on TIMIT dataset – although
the method is computationally expeensive (Obuchi &
Stern, 2003).

• By estimating and applying fMLLR transforms, we
can normalise the variability between speakers. In
addition, applying speaker adaptation during decoding
can reduce the mismatch between train and test data
– resulting in better WER performance. Using DNN
for SAT/speaker adaptation can further improve the
WER.

• The datasets used in the experiments are small. Future
experiments can be carried out on larger datasets. This
would likely improve WER results.

• Overall, our final HMM-DNN SAT model achieved
WER of 32.08% on TIMIT dataset and 44.48% on our
own recordings. This is an improvement of WER over
the monophone model by 22.36% on TIMIT dataset
and by 18.6% on our own recordings.

References
Gales, Mark JF. Maximum likelihood linear transforma-

tions for hmm-based speech recognition. Computer
speech & language, 12(2):75–98, 1998.

Moreno, Pedro J, Raj, Bhiksha, and Stern, Richard M.
A vector taylor series approach for environment-
independent speech recognition. In 1996 IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, volume 2, pp. 733–
736. IEEE, 1996.

Obuchi, Yasunari and Stern, Richard M. Normalization of
time-derivative parameters using histogram equalization.
In Eighth European Conference on Speech Communica-
tion and Technology, 2003.

Povey, Daniel, Ghoshal, Arnab, Boulianne, Gilles, Burget,
Lukas, Glembek, Ondrej, Goel, Nagendra, Hannemann,
Mirko, Motlicek, Petr, Qian, Yanmin, Schwarz, Petr, et al.
The kaldi speech recognition toolkit. Technical report,
IEEE Signal Processing Society, 2011.

Prasad, N Vishnu and Umesh, Srinivasan. Improved cep-
stral mean and variance normalization using bayesian
framework. In 2013 IEEE Workshop on Automatic
Speech Recognition and Understanding, pp. 156–161.
IEEE, 2013.

Viikki, Olli and Laurila, Kari. Cepstral domain segmen-
tal feature vector normalization for noise robust speech
recognition. Speech Communication, 25(1-3):133–147,
1998.

Woodland, Phil C. Speaker adaptation for continuous den-
sity hmms: A review. In ISCA Tutorial and Research
Workshop (ITRW) on Adaptation Methods for Speech
Recognition, 2001.


