
Learning Algorithms and Regularization

s1886437

Abstract
This paper documents experiments performed on
the classification of the EMNIST dataset to com-
pare the learning algorithms SGD, RMSProp and
Adam. As well as the effects of using a Cosine
annealing learning rate scheduler on training on
a deep network and experimenting with warm
restarts. The paper ends with experiments on
AdamW and L2 regularization and a conclusion
of the finding of the experiments.

1. Introduction
In this report we will outline experiments and finding on;
Adam and RMSProp learning algorithms; Cosine anneal-
ing learning rate scheduler and regularization and weight
decay with Adam. The aim is examine the effects of these
techniques on classification when applied to the EMNIST
dataset and to examine how they effect the learning of the
network.

The EMNIST dataset (Cohen, 2017) is a set of handwritten
characters and digits designed to be harder to classify than
the MNIST dataset. The set represents the characters as
28x28 gray scale images and has 47 different classes, be-
cause of this are networks with have 784 input nodes and 47
output nodes. During training and testing of the networks
we will use a set if 100,000 data points for training and two
sets of 15,800 data points for testing and validation.

2. Baseline systems
When creating classifiers for a dataset its is very useful
to have a baseline classifier. This is a simple classifier
that is very unlikely to encounter technical difficult during
implementation. The baseline gives us an idea of the sort of
classification rate we should expect from our more complex
algorithms in the data set. If the baseline is out performing
our more complex techniques it is very like that we have
made mistakes in the implementation of these techniques.

For the baseline we are using stochastic gradient decent
(SGD) on a network of 100 ReLU hidden units per hidden
layer. Using a learning rate of 0.1 and batch size of 100
we then tested the network with varying numbers of layers.
We found the best average classification rate on test data to
be just over 0.8 (figure 1).

Despite this we will be using a standard network architec-
ture of 3 hidden layers of 100 ReLU units for the rest of
this report.

Figure 1. Average performance of SGD on EMNIST data set using
ReLU hidden layers of size 100 units.

3. Learning algorithms – RMSProp and
Adam

We have implemented the adaptive learning algorithms
RMSProp and Adam learning into our network so we can
compare their performance.

3.1. RMSProp

RMSProp updateds weight in a similar style to SGD but it
adapts the learning rate for each weight by normalizing the
learning rate with a moving average of the squared error
gradient at the weight.

The moving average for weight i at time step t is given by:

S i(t) = βS i(t − 1) + (1 − β)di(t)2 (1)

Where di is the gradient of error with respect to the weight
and β is the decay rate (∼ 0.9). And the weight update is
given by:

wi(t) = wi(t − 1)
−η

√
S i(t) + ε

di (2)

Where ε is a very small constant (∼1e-8) to prevent dividing
by 0 errors.

We optimized the hyper parameters and found that a learn-
ing rate of 0.005 and decay rate of 0.85 averaged an accu-
racy of 0.841 on the validation set.

3.2. Adam

Adam (Kingma & Ba, 2014) can be seen as RMSProp with
momentum. It introduces a momentum term to the error



MLP Coursework 1 (s1886437)

gradient. Given by:

The moving average for weight i at time step t is given by:

Mi(t) = αMi(t − 1) + (1 − α)di(t) (3)

Where α is the momentum (∼ 0.9). The weight update is
given by:

wi(t) = wi(t − 1)
−η

√
S i(t) + ε

Mi(t) (4)

In Adam the decay rate term for S i(t) is ∼0.999

We optimized the hyper parameters and found that a learn-
ing rate of 0.0006, a decay rate of 0.999 and a momentum
of 0.85 averaged an accuracy of 0.843 on the validation set.

3.3. Comparison

We will now compare the learning algorithms RMSProp,
Adam and SGD. We trained the 3 algorithms for 25 epochs
using the hyper parameters highlighted earlier and a batch
size of 100.

Figure 2. Training Error of Adam RMSProp and SGD on EM-
NIST

Figure 3. Validation Accuracy of Adam RMSProp and SGD on
EMNIST

Looking at the training error in Figure 2 we can see that
RMSProp and Adam have fit the training data far better
than SGD. They are however much nosier, this could be
due to the momentum of the algorithms preventing them
from smoothing. Figure 3 shows us the the accuracy on

the validation set of the algorithms, despite better training
error performance of Adam and RMSProp all 3 algorithms
perform roughly equally here.

As a final test of the 3 algorithms we ran them multiple
times and recorded accuracy on the test set. Table 1 shows
us that Adam performed the best of the 3 algorithms but all
were comparatively similar.

Test 1 Test 2 Test 3 Test 4 Average
SGD 0.85 0.80 0.78 0.84 0.82
RMSProp 0.79 0.81 0.80 0.84 0.81
Adam 0.84 0.83 0.86 0.82 0.84

Table 1. Test accuracy results of the learning algorithms, Average
is to 2s.f.

4. Cosine annealing learning rate scheduler
We have implemented a Cosine annealing learning rate
scheduler (Loshchilov & Hutter, 2017) to control the learn-
ing rate through the training of the network. The scheduler
reduces the learning rate as the network trains by the for-
mula:

ηt = ηmin + 0.5(ηmax − ηmin)(1 + cos(πTcur/Ti)) (5)

Where Tcur is epochs since restart and Ti epoch count at
which a restart will be performed. We can see that as Tcur

reaches Ti (1 + cos(πTcur/Ti)) will reduce from an initial
output of 2 down to 0 where a warm restart is preformed.
This simply sets Tcur to 0 and multiplies Ti by a factor
called Tmult this causes the next restart to take more epochs
to reach. The learning rate will then be set to its maximum
and reduce down to its minimum again.

The idea of the scheduler is to quickly approach a good
solution then make very fine adjustments to the weights
towards the end of the training, following the cosine anneal-
ing. And with warm restarts as proposed in (Loshchilov &
Hutter, 2016) that are intended to accelerate the training of
the network.

To test the scheduler we will train SGD and Adam for 100
epochs with a fixed learning rate; Cosine annealing with
no warm restarts and Cosine annealing with warm restarts.
This will let us examine the effects for both the Cosine
annealing and the restarts.

4.1. Fixed Learning Rates

This will serve as a baseline for making comparisons with
the other 2 methods we will use. We trained SGD with
a learning rate of 0.01 and 0.00015 for Adam (0.85 for
momentum and 0.999 for decay rate). The baselines were
trained for 100 epoches.

We can see in figure 4 that both the algorithms begin to
slightly over fit the training set causing the validation error



MLP Coursework 1 (s1886437)

Figure 4. Error on train and validation sets of Adam and SGD on
EMNIST using fixed learning rates

to slightly increase. Despite this the results on the test data
were strong. Adam had a accuracy rating of 0.89 and SGD
had 0.86.

4.2. Cosine Annealing With No Warm Restarts

We have assumed that no warm restarts means Ti will equal
100. This will cause the learning rate to decrease to 0 over
the course of the 100 epochs. SGD has used a ηmax of 0.02
and ηmin of 0.002, Adam has used a ηmax of 0.0005 and ηmin

of 0.

Figure 5. Error on train and validation sets of Adam and SGD on
EMNIST using Cosine Annealing without restarts

Again in figure 5 we see that SGD and Adam have higher
levels of validation error as in the baseline and similar
errors in the training set. The Cosine Annealing has yeilded
worse results than on the baseline. SGD model scored 0.79
accuracy on the test set and while Adam scored 0.85. These
worse results could be caused by the model over fitting the
training data too much as indicated by the higher validation
error.

4.3. Cosine Annealing With Warm Restarts

For the warm restarts Ti has been set to 25 and Tmult to
3. This give us one warm restart at epoch 25 and then the
learning rate to decrease to 0 for the final, 100th, epoch. A
max learning rate discount factor has also been included.
This lowers the maximum learning rate after a warm restart.

SGD and Adam have the same hyper parameters as in the
last section and both are using a max learning rate discount
factor of 0.8. SGD has used a ηmax of 0.02 and ηmin of
0.002, Adam has used a ηmax of 0.0002 and ηmin of 0.

Figure 6. Error on train and validation sets of Adam and SGD on
EMNIST using Cosine Annealing with warm restarts

We can in figure 6 the effects of the warm restart takes place
at epoch 25. The error lines spike slightly as the learning
rate is increased. Then continue to fall lower than it was
plateauing before the restart. The restart also lead to greater
performance in the testing set than without the restart with
SGD scoring 0.90 and Adam scoring 0.89.

This result is slightly unexpected as Adam did not outper-
form its baseline. It is possible that more time was needed
to be spent on hyper parameter optimization.

5. Regularization and weight decay with
Adam

In this section we will be exploring the effects of L2 regular-
ization and weight decay for the Adam learning algorithm.
As well as testing learning rate schedules with AdamW.

L2 regularization aims to prevent over fitting in training by
adding a regularization term to the error gradient. How-
ever, regularization has been shown to be less effective in
adaptive gradient methods such as Adam. This is due to L2
regularization not working as intended in adaptive gradient
algorithms

To over come this Adam with weight decay (AdamW) has
been proposed (Loshchilov & Hutter, 2017) that decouples
weight decay from the error gradient and adds it too the
weight update.

5.1. L2 Regularization vs. Weight Decay

With the research shown in (Loshchilov & Hutter, 2017) it
should be expected that Adam with weight decay should
outperform Adam with L2.

To compare the two we have created AdamW and Adam
with L2 and run them on the same three data splits three
different times. Both are using a constant learning rate, the
hyper parameters given in section 3 and run for 100 epochs.
The weight decay rate on both is 0.00001.



MLP Coursework 1 (s1886437)

Test 1 Test 2 Test 3 Average
AdamW 0.87 0.86 0.85 0.86
Adam With L2 0.80 0.85 0.85 0.83

Table 2. Test accuracy results AdamW and Adam with L2, Aver-
age is to 2s.f.

From Table 2 we can a significant performance improve-
ment in AdamW over Adam with L2.

5.2. Constant Learning Rate vs. Cosine Annealing
Schedule

We will now compare AdamW performance using a con-
stant Learning Rate and a learning rate controlled by Cosine
Annealing. The constant learning rate was set to 0.0002
and Cosine Annealing had ηmax of 0.0002 and ηmin of 0.

Figure 7. Error on train and validation sets of Adam on EMNIST
using Cosine Annealing adjusted learning rates and constant learn-
ing rate

We can see that the Cosine Annealing adjusted learning
rate kept the model from over fitting slightly better than the
constant learning rate.

5.3. No Restarts vs. Warm Restart

As in 4.2 we have assumed that no restarts is the same as
Ti = 100. ηmax of 0.0002 and ηmin of 0 have been used for
both.

Figure 8. Error on train and validation sets of Adam on EMNIST
using Cosine Annealing with and with out resets

We see the validation errors converge to roughly the same
level. The two methods despite this the two scored the same
result of 0.86 on the test set.

6. Conclusions
For the experiments we have conducted we can conclude
that SGD can still produce strong classification results when
optimized and can serve as a strong baseline. The optimum
configuration we found for training of 100 epochs is train-
ing with a Cosine Annealing Schedule with warm restarts
where Ti = 25, ηmax = 0.02, ηmin = 0.002 and a maximum
learning rate decay of 0.8.

The best results we found using Adam for training on 100
epochs is training with a Cosine Annealing Schedule with
warm restarts where Ti = 25, ηmax = 0.0002, ηmin = 0.0
and a maximum learning rate decay of 0.8. With 0.85
momentum and 0.999 decay rate.

Our experiments with Cosine Annealing With Warm
Restarts have shown that in general warm restarts improve
the quality of training when compared to the same method
with out restarts.

We have also shown that AdamW outperforms Adam with
L2 regularization.

Further work could be done to try and reduce the amount of
over fitting. We would expect that drop out might be able
to help in this regard. Work could as be done on finding an
optimum number for hidden units in the hidden layers and
the number of hidden layers.

References
Cohen, G., Afshar S. Tapson J. van Schaik A. Crafting

papers on machine learning. In EMNIST: an extension of
MNIST to handwritten letters., 2017. URL http://arxiv.
org/abs/1702.05373.

Kingma, Diederik P. and Ba, Jimmy. Adam: A method for
stochastic optimization, 2014.

Loshchilov, Ilya and Hutter, Frank. Sgdr: Stochastic gradi-
ent descent with warm restarts, 2016.

Loshchilov, Ilya and Hutter, Frank. Fixing weight decay
regularization in adam, 2017.

http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373

